Калюжная Анна Владимировна


кандидат технических наук
anna.kalyuzhnaya@itmo.ru
Структурное подразделение:
лаборатория композитного искусственного интеллекта
Должность:
старший научный сотрудник
Структурное подразделение:
национальный центр когнитивных разработок
Должность:
старший научный сотрудник
Структурное подразделение:
факультет цифровых трансформаций
Должность:
доцент (квалификационная категория "ординарный доцент")
Профиль:
05.13.17 - Теоретические основы информатики
25.00.35 - Геоинформатика
05.13.18 - Математическое моделирование, численные методы и комплексы программ
2.3.8. - Информатика и информационные процессы
1.2.1. - Искусственный интеллект и машинное обучение
1.2.2. - Математическое моделирование, численные методы и комплексы программ
1.2.3. - Теоретическая информатика, кибернетика
1.2.1 - Искусственный интеллект и машинное обучение

Область интересов:
Математическое моделирование, многомерный статистический анализ, анализ временных рядов, модели на данных, интеллектуальный анализ данных, машинное обучение.
Рабочий язык:
Английский, Русский

Публикации руководителя
Выходные данные Год Индексирование в БД
Pinchuk M., Kirgizov G., Yamshchikova L., Nikitin N., Deeva I., Shakhkyan K., Borisov I., Zharkov K., Kalyuzhnaya A. GOLEM: Flexible Evolutionary Design of Graph Representations of Physical and Digital Objects//GECCO 2024 - Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2024, pp. 1668-1675 2024 Scopus, Web of Science
Klimova A., Nasonov D., Hvatov A., Nikitin N.O., Ivanov S.V., Kalyuzhnaya A.V., Boukhanovsky A. Strategic Trends in Artificial Intelligence Through Impact of Computational Science: What Young Scientists Should Expect//Procedia Computer Science, 2023, Vol. 229, pp. 1-7 2023 Scopus, Web of Science
Deeva I., Kalyuzhnaya A.V., Boukhanovsky A.V. Adaptive Learning Algorithm for Bayesian Networks Based on Kernel Mixtures Distributions//International Journal of Artificial Intelligence, 2023, Vol. 21, No. 1, pp. 90-108 2023 Scopus, Белый список
Nikitin N.O., Pinchuk M., Pokrovskii V., Shevchenko P., Getmanov A., Aksenkin Y., Revin I., Stebenkov A., Latypov V., Poslavskaya E., Kalyuzhnaya A.V. Integration Of Evolutionary Automated Machine Learning With Structural Sensitivity Analysis For Composite Pipelines//Knowledge-Based Systems, 2023, Vol. 302, pp. 112363 2023 Scopus, Web of Science, Белый список
Filatova A., Kovalchuk M., Batalenkov S., Voskresenskiy A., Deeva I., Kalyuzhnaya A., Shpilman A., Kondrashova N., Dudnichenko M., Nasonov D. A Multi-Contractor Approach for MLRCPSP with the Graph Structure Optimization//IEEE Congress on Evolutionary Computation, CEC 2023, 2023, pp. 1-8 2023 Scopus, Web of Science
Nizovtseva I., Palmin V., Simkin I., Starodumov I., Mikushin P., Nozik A., Hamitov T., Ivanov S., Vikharev S., Zinovev A., Svitich V., Mogilev M., Nikishina M., Kraev S., Yurchenko S., Mityashin T., Chernushkin D., Kalyuzhnaya A., Blyakhman F. Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithms//Algorithms, 2023, Vol. 16, No. 3, pp. 125 2023 Scopus, Web of Science, Белый список
Starodubcev N., Nikitin N., Andronova E., Gavaza K., Sidorenko D., Kalyuzhnaya A.V. Generative design of physical objects using modular framework//Engineering Applications of Artificial Intelligence, 2023, Vol. 119, pp. 105715 2023 Scopus, Web of Science, Белый список
Deeva I., Bubnova A., Kalyuzhnaya A.V. Advanced Approach for Distributions Parameters Learning in Bayesian Networks with Gaussian Mixture Models and Discriminative Models//Mathematics, 2023, Vol. 11, No. 2, pp. 343 2023 Scopus, Web of Science, Белый список
Starodubcev N., Nikitin N.O., Kalyuzhnaya A.V. Surrogate-Assisted Evolutionary Generative Design Of Breakwaters Using Deep Convolutional Networks//IEEE Congress on Evolutionary Computation, CEC 2022, 2022, pp. 1-8 2022 Scopus, Web of Science
Deeva I., Mossyayev A., Kalyuzhnaya A.V. A Multimodal Approach to Synthetic Personal Data Generation with Mixed Modelling: Bayesian Networks, GAN’s and Classification Models//Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 2022, Vol. 419, pp. 847-859 2022 Scopus, Web of Science
Nikitin N.O., Revin I., Hvatov A., Vychuzhanin P., Kalyuzhnaya A.V. Hybrid and Automated Machine Learning Approaches for Oil Fields Development: the Case Study of Volve Field, North Sea//Computers and Geosciences, 2022, Vol. 161, pp. 105061 2022 Scopus, Web of Science
Nikitin N.O., Vychuzhanin P., Sarafanov M., Polonskaia I.S., Revin I., Barabanova I.V., Kaluzhnaya A.V., Boukhanovsky A. Automated Evolutionary Approach for the Design of Composite Machine Learning Pipelines//Future Generation Computer Systems, 2022, Vol. 127, pp. 109-125 2022 Scopus, Web of Science
Sarafanov M., Nikitin N.O., Kalyuzhnaya A.V. Automated Data-Driven Approach for Gap Filling in the Time Series Using Evolutionary Learning//Advances in Intelligent Systems and Computing, 2022, Vol. 1401, pp. 633-642 2022 Scopus, Web of Science
Быков Н.Ю., Хватов А.А., Калюжная А.В., Бухановский А.В. Метод восстановления моделей тепломассопереноса по пространственно-временным распределениям параметров // Письма в Журнал технической физики -2021. - Т. 47. - № 24. - С. 9-12 2021 RSCI, ВАК, РИНЦ
Nikitin N.O., Hvatov A., Polonskaia I.S., Kalyuzhnaya A.V., Grigorev G., Wang X., Qian X. Generative design of microfluidic channel geometry using evolutionary approach//GECCO 2021 - Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2021, pp. 59-60 2021 Scopus, Web of Science
Bykov N., Hvatov A., Kalyuzhnaya A.V., Boukhanovsky A.V. A method of generative model design based on irregular data in application to heat transfer problems//Journal of Physics: Conference Series, 2021, Vol. 1959, No. 1, pp. 012012 2021 Scopus, Web of Science
Kalyuzhnaya A.V., Nikitin N.O., Hvatov A., Maslyaev M., Yachmenkov M., Boukhanovsky A.V. Towards generative design of computationally efficient mathematical models with evolutionary learning//Entropy, 2021, Vol. 23, No. 1, pp. 28 2021 Scopus, Web of Science
Deeva I., Bubnova A., Andriushchenko P.D., Voskresenskiy A., Bukhanov N.V., Nikitin N.O., Kalyuzhnaya A.V. Oil and Gas Reservoirs Parameters Analysis Using Mixed Learning of Bayesian Networks//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2021, Vol. 12742, pp. 394-407 2021 Scopus, Web of Science
Bubnova A., Deeva I., Kalyuzhnaya A.V. MIxBN: library for learning Bayesian networks from mixed data//Procedia Computer Science, 2021, Vol. 193, pp. 494-503 2021 Scopus, Web of Science
Maslyaev M., Hvatov A., Kalyuzhnaya A.V. Partial differential equations discovery with EPDE framework: Application for real and synthetic data (R)//Journal of Computational Science, 2021, Vol. 53, pp. 101345 2021 Scopus, Web of Science
Nikitin N.O., Polonskaia I.S., Kalyuzhnaya A.V., Boukhanovsky A.V. The multi-objective optimisation of breakwaters using evolutionary approach//Proceedings of the 5th International Conference on Maritime Technology and Engineering, MARTECH 2020, 2021, Vol. 2, pp. 767-774 2021 Scopus
Polonskaia I.S., Nikitin N.O., Revin I., Vychuzhanin P., Kaluzhnaya A.V. Multi-Objective Evolutionary Design of Composite Data-Driven Models//IEEE Congress on Evolutionary Computation, CEC 2021, 2021, pp. 926-933 2021 Scopus, Web of Science
Андрющенко П.Д., Деева И.Ю., Калюжная А.В., Бубнова А.В., Воскресенский А.Г., Буханов Н.В. Анализ параметров нефтегазовых месторождений с использованием байесовских сетей [Analysis of parameters of oil and gas fields using Bayesian networks] // Интеллектуальный анализ данных в нефтегазовой отрасли: сборник тезисов конференции [Data Science in Oil and Gas 2020] -2020. - С. 1-10 2020 Scopus, РИНЦ
Maslyaev M., Hvatov A., Kalyuzhnaya A.V. Discovery of the data-driven models of continuous metocean process in form of nonlinear ordinary differential equations//Procedia Computer Science, 2020, Vol. 178, pp. 18-26 2020 Scopus, Web of Science
Sarafanov M., Kazakov E.E., Nikitin N.O., Kalyuzhnaya A.V. A Machine Learning Approach for Remote Sensing Data Gap-Filling with Open-Source Implementation: An Example Regarding Land Surface Temperature, Surface Albedo and NDVI//Remote Sensing, 2020, Vol. 12, No. 23, pp. 3865 2020 Scopus, Web of Science
Deeva I., Andriushchenko P.D., Kalyuzhnaya A.V., Boukhanovsky A.V. Bayesian Networks-based personal data synthesis//ACM International Conference Proceeding Series, 2020, pp. 6-11 2020 Scopus, Web of Science
Никитин Н.О., Полонская Я.С., Калюжная А.В. Интеллектуальное проектирование защитных сооружений на шельфе с применением моделей морской среды и методов оптимизации // Комплексные исследования Мирового океана: материалы V Всероссийской научной конференции молодых ученых (Калининград, 18-22мая 2020г.) -2020. - С. 141-142 2020 РИНЦ
Калюжная А.В., Никитин Н.О., Вычужанин П.В., Хватов А.А. Технологии прикладного искусcтвенного интеллекта в задачах численного моделирования процессов в океане // Комплексные исследования Мирового океана: материалы V Всероссийской научной конференции молодых ученых (Калининград, 18-22мая 2020г.) -2020. - С. 81-82 2020 РИНЦ
Nikitin N.O., Polonskaia I.S., Vychuzhanin P., Barabanova I.V., Kaluzhnaya A.V. Structural Evolutionary Learning for Composite Classification Models//Procedia Computer Science, 2020, Vol. 178, pp. 414-423 2020 Scopus, Web of Science
Kaluzhnaya A.V., Nikitin N.O., Vychuzhanin P., Hvatov A., Boukhanovsky A.V. Automatic Evolutionary Learning of Composite Models With Knowledge Enrichment//GECCO 2020 - Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2020, pp. 43-44 2020 Scopus, Web of Science
Maslyaev M., Hvatov A., Kalyuzhnaya A. Data-Driven Partial Differential Equations Discovery Approach for the Noised Multi-dimensional Data//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020, Vol. 12138 LNCS, pp. 86-100 2020 Scopus, Web of Science
Uteuov A., Kalyuzhnaya A.V., Boukhanovsky A.V. The cities weather forecasting by crowdsourced atmospheric data//Procedia Computer Science, 2019, Vol. 156, pp. 347-356 2019 Scopus, Web of Science
Maslyaev M., Hvatov A., Kalyuzhnaya A.V. Data-driven partial derivative equations discovery with evolutionary approach//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, Vol. 11540 LNCS, pp. 635-641 2019 Scopus, Web of Science
Nikitin N.O., Deeva I., Vychuzhanin P., Kalyuzhnaya A.V., Hvatov A., Kovalchuk S.V. Deadline-driven approach for multi-fidelity surrogate-assisted environmental model calibration: SWAN wind wave model case study//GECCO 2019 - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion, 2019, pp. 1583-1591 2019 Scopus, Web of Science
Vychuzhanin P., Nikitin N.O., Kalyuzhnaya A.V. Robust Ensemble-Based Evolutionary Calibration of the Numerical Wind Wave Model//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, Vol. 11536, pp. 614-627 2019 Scopus, Web of Science
Вычужанин П.В., Калюжная А.В. Робастная калибровка параметров численной модели ветрового волнения SWAN // Альманах научных работ молодых ученых Университета ИТМО -2019. - Т. 3. - С. 151-155 2019 РИНЦ
Deeva I., Nikitin N.O., Kalyuzhnaya A.V. Pattern Recognition in Non-Stationary Environmental Time Series Using Sparse Regression//Procedia Computer Science, 2019, Vol. 156, pp. 357-366 2019 Scopus, Web of Science
Khvatov A.A., Nikitin N., Kaluzhnaya A.V., Kosukhin S.S. Adaptation of NEMO-LIM3 model for multigrid high-resolution Arctic simulation//Ocean Modelling, 2019, Vol. 141, pp. 101427 2019 Scopus, Web of Science
Kovalchuk S.V. ., Metsker O.G., Funkner A.A., Kisliakovskii I.O., Nikitin N.O., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O. A Conceptual Approach to Complex Model Management with Generalized Modelling Patterns and Evolutionary Identification//Complexity, 2018, pp. 5870987 2018 Scopus, Web of Science
Araya-Lopez J., Nikitin N.O., Kalyuzhnaya A.V. Case-adaptive ensemble technique for met-ocean data restoration//Procedia Computer Science, 2018, Vol. 136, pp. 311-320 2018 Scopus, Web of Science
Uteuov A., Kalyuzhnaya A. Combined document embedding and hierarchical topic model for social media texts analysis//Procedia Computer Science, 2018, Vol. 136, pp. 293-303 2018 Scopus, Web of Science
Вычужанин П.В., Калюжная А.В. Разработка системы автоматизированной верификации гидрометеорологической вычислительной системы // Альманах научных работ молодых ученых Университета ИТМО -2018. - Т. 2. - С. 114-117 2018 РИНЦ
Kalyuzhnaya A.V., Nasonov D., Ivanov S.V., Kosukhin S.S., Boukhanovsky A.V. Towards a scenario-based solution for extreme metocean event simulation applying urgent computing//Future Generation Computer Systems, 2018, Vol. 79, No. Part.2, pp. 604-617 2018 Scopus, Web of Science
Kovalchuk S.V., Kisliakovskii I.O., Metsker O.G., Nikitin N.O., Funkner A.A., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O. Towards management of complex modeling through a hybrid evolutionary identification//GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion, 2018, pp. 255-256 2018 Scopus
Kalyuzhnaya A.V., Nikitin N.O., Butakov N.A., Nasonov D.A. Precedent-based approach for the identification of deviant behavior in social media//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, Vol. 10862, pp. 846-852 2018 Scopus, Web of Science
Nikitin N.O., Kalyuzhnaya A.V., Bochenina K., Kudryashov A., Uteuov A., Derevitskii I., Boukhanovsky A.V. Evolutionary ensemble approach for behavioral credit scoring//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, Vol. 10862, pp. 825-831 2018 Scopus, Web of Science
Утеуов А.К., Арайа Лопес Х., Калюжная А.В. Контроль качества и восстановление пропусков в гидрометеорологических данных // Альманах научных работ молодых ученых Университета ИТМО -2018. - Т. 2. - С. 141-144 2018 РИНЦ
Vychuzhanin P., Hvatov A., Kalyuzhnaya A.V. Anomalies Detection in Metocean Simulation Results Using Convolutional Neural Networks//Procedia Computer Science, 2018, Vol. 136, pp. 321-330 2018 Scopus, Web of Science
Nikishova A.V., Kalyuzhnaya A.V., Boukhanovsky A.V., Khukstra A. Uncertainty quantification and sensitivity analysis applied to the wind wave model SWAN//Environmental Modelling and Software, 2017, Vol. 95, pp. 344-357 2017 Scopus, Web of Science
Lopez J.L., Uteuov A., Kalyuzhnaya A.V. Quality control and data restoration of metocean Arctic data//Procedia Computer Science, 2017, Vol. 119, pp. 315-324 2017 Scopus, Web of Science
Noymanee J., Nikitin N.O., Kaluzhnaya A.V. Urban Pluvial Flood Forecasting using Open Data with Machine Learning Techniques in Pattani Basin//Procedia Computer Science, 2017, Vol. 119, pp. 288-297 2017 Scopus, Web of Science
Gusarov A., Kalyuzhnaya A.V., Boukhanovsky A.V. Spatially adaptive ensemble optimal interpolation of in-situ observations into numerical vector field models//Procedia Computer Science, 2017, Vol. 119, pp. 325-333 2017 Scopus, Web of Science
Araya-Lopez J., Kaluzhnaya A.V., Kosukhin S.S., Ivanov S.V. Data Quality Control for St. Petersburg flood warning system//Procedia Computer Science, 2016, Vol. 80, pp. 2128-2140 2016 Scopus, Web of Science
Nikitin N.O., Spirin D.S., Visheratin A.A., Kalyuzhnaya A.V. Statistics-based models of flood-causing cyclones for the Baltic Sea region//Procedia Computer Science, 2016, Vol. 101, pp. 272–281 2016 Scopus, Web of Science
Kaluzhnaya A.V., Boukhanovsky A.V. Computational uncertainty management for coastal flood prevention system//Procedia Computer Science, 2015, Vol. 51, pp. 2317-2326 2015 Scopus, Web of Science
Kosukhin S.S., Kaluzhnaya A.V., Nikishova A.V., Boukhanovsky A.V. Special aspects of wind wave simulations for surge flood forecasting and prevention//Procedia Computer Science, 2015, Vol. 66, pp. 184-190 2015 Scopus, Web of Science
Kalyuzhnaya A.V., Visheratin A.A., Dudko A., Nasonov D.A., Boukhanovsky A.V. Synthetic storms reconstruction for coastal floods risks assessment//Journal of Computational Science, 2015, Vol. 9, pp. 112-117 2015 Scopus, Web of Science
Visheratin A.A., Nasonov D.A. ., Kaluzhnaya, A.V. ., Kosukhin, S.S. . A simulation platform for atmospheric phenomena study within coastal floods in Baltic sea area//International Multidisciplinary Scientific GeoConference-SGEM: 15th International Multidisciplinary Scientific Geoconference SGEM 2015, 2015, Vol. 1, No. 2, pp. 11-18 2015 Scopus, Web of Science
Kosukhin, S.S. ., Kaluzhnaya, A.V. ., Nasonov D. Problem solving environment for development and maintenance of St. Petersburg’s Flood Warning System//Procedia Computer Science, 2014, Vol. 29, pp. 1667–1676 2014 Scopus, Web of Science
Kaluzhnaya A.V., Nasonov D.A., Boukhanovsky A.V. . Ensemble risk assessment for flood warning system in st. Petersburg//14th International Multidisciplinary Scientific Geoconference SGEM 2014. GeoConference on Informatics, Geoinformatics and Remote Sensing. Conference Proceedings, 2014, Vol. 1, No. 3, pp. 247-256 2014 Scopus, Web of Science
Ivanov, S.V. ., Kosukhin, S.S. ., Kaluzhnaya, A.V. ., Boukhanovsky, A.V. . Erratum to Simulation-based collaborative decision support for surge floods prevention in St. Petersburg [J. Comput. Sci. 3 (2012) 450-455]//Journal of Computational Science, 2013, Vol. 4, No. 5, pp. 438 2013 Scopus, Web of Science
Ivanov S.V., Kosukhin S.S., Kaluzhnaya A.V., Boukhanovsky A.V. Simulation-based collaborative decision support for surge floods prevention in St. Petersburg//Journal of Computational Science, 2012, Vol. 3, No. 6, pp. 450-455 2012 Scopus, Web of Science
Мостаманди М.В., Насонов Д.А., Калюжная А.В., Бухановский А.В. Ансамблевые прогнозы экстремальных гидрометеорологических явлений в распределенной среде CLAVIRE // Известия высших учебных заведений. Приборостроение -2011. - Т. 54. - № 10. - С. 100-102 2011 ВАК, РИНЦ