Никитин Николай Олегович


кандидат технических наук
nnikitin@itmo.ru
Структурное подразделение:
лаборатория композитного искусственного интеллекта
Должность:
руководитель группы научно-технического развития
Структурное подразделение:
национальный центр когнитивных разработок
Должность:
старший научный сотрудник
Структурное подразделение:
национальный центр когнитивных разработок
Должность:
старший научный сотрудник
Структурное подразделение:
факультет цифровых трансформаций
Должность:
доцент (квалификационная категория "ординарный доцент")
Профиль:
2.3.5. - Математическое и программное обеспечение вычислительных систем, комплексов и компьютерных сетей
1.2.1 - Искусственный интеллект и машинное обучение
1.2.2. - Математическое моделирование, численные методы и комплексы программ
1.2.1. - Искусственный интеллект и машинное обучение

Область интересов:
Автоматическое машинное обучение, генеративный дизайн, композитный ИИ, эволюционная оптимизация.
Рабочий язык:
Русский

Публикации руководителя
Выходные данные Год Индексирование в БД
Getmanov A., Nikitin N.O. Evolutionary Automated Machine Learning for Light-Weight Multi-Modal Pipelines//IEEE Congress on Evolutionary Computation, CEC 2024, 2024, pp. 1-8 2024 Scopus, Web of Science
Borisova J., Nikitin N. Lightweight Neural Ensemble Approach for Arctic Sea Ice Forecasting//IEEE Congress on Evolutionary Computation, CEC 2024, 2024, pp. 1-8 2024 Scopus, Web of Science
Pinchuk M., Kirgizov G., Yamshchikova L., Nikitin N., Deeva I., Shakhkyan K., Borisov I., Zharkov K., Kalyuzhnaya A. GOLEM: Flexible Evolutionary Design of Graph Representations of Physical and Digital Objects//GECCO 2024 - Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2024, pp. 1668-1675 2024 Scopus, Web of Science
Nikitin N.O., Teryoshkin S., Pokrovskii V., Pakulin S., Nasonov D. Improvement of Computational Performance of Evolutionary AutoML in a Heterogeneous Environment//IEEE Congress on Evolutionary Computation, CEC 2023, 2023, pp. 1-8 2023 Scopus, Web of Science
Starodubcev N., Nikitin N., Andronova E., Gavaza K., Sidorenko D., Kalyuzhnaya A.V. Generative design of physical objects using modular framework//Engineering Applications of Artificial Intelligence, 2023, Vol. 119, pp. 105715 2023 Scopus, Web of Science, Белый список
Stebenkov A.S., Nikitin N.O. Automated Generation of Ensemble Pipelines using Policy-Based Reinforcement Learning method//Procedia Computer Science, 2023, Vol. 229, pp. 70-79 2023 Scopus, Web of Science
Revin I., Potemkin V., Balabanov N., Nikitin N.O. Automated machine learning approach for time series classification pipelines using evolutionary optimization//Knowledge-Based Systems, 2023, Vol. 268, pp. 110483 2023 Scopus, Web of Science, Белый список
Klimova A., Nasonov D., Hvatov A., Nikitin N.O., Ivanov S.V., Kalyuzhnaya A.V., Boukhanovsky A. Strategic Trends in Artificial Intelligence Through Impact of Computational Science: What Young Scientists Should Expect//Procedia Computer Science, 2023, Vol. 229, pp. 1-7 2023 Scopus, Web of Science
Nikitin N.O., Pinchuk M., Pokrovskii V., Shevchenko P., Getmanov A., Aksenkin Y., Revin I., Stebenkov A., Latypov V., Poslavskaya E., Kalyuzhnaya A.V. Integration Of Evolutionary Automated Machine Learning With Structural Sensitivity Analysis For Composite Pipelines//Knowledge-Based Systems, 2023, Vol. 302, pp. 112363 2023 Scopus, Web of Science, Белый список
Starodubcev N., Nikitin N.O., Kalyuzhnaya A.V. Surrogate-Assisted Evolutionary Generative Design Of Breakwaters Using Deep Convolutional Networks//IEEE Congress on Evolutionary Computation, CEC 2022, 2022, pp. 1-8 2022 Scopus, Web of Science
Nikitin N.O., Vychuzhanin P., Sarafanov M., Polonskaia I.S., Revin I., Barabanova I.V., Kaluzhnaya A.V., Boukhanovsky A. Automated Evolutionary Approach for the Design of Composite Machine Learning Pipelines//Future Generation Computer Systems, 2022, Vol. 127, pp. 109-125 2022 Scopus, Web of Science
Sarafanov M., Nikitin N.O., Kalyuzhnaya A.V. Automated Data-Driven Approach for Gap Filling in the Time Series Using Evolutionary Learning//Advances in Intelligent Systems and Computing, 2022, Vol. 1401, pp. 633-642 2022 Scopus, Web of Science
Sarafanov M., Pokrovskii V., Nikitin N.O. Evolutionary Automated Machine Learning for Multi-Scale Decomposition and Forecasting of Sensor Time Series//IEEE Congress on Evolutionary Computation, CEC 2022, 2022, pp. 1-8 2022 Scopus, Web of Science
Nikitin N.O., Revin I., Hvatov A., Vychuzhanin P., Kalyuzhnaya A.V. Hybrid and Automated Machine Learning Approaches for Oil Fields Development: the Case Study of Volve Field, North Sea//Computers and Geosciences, 2022, Vol. 161, pp. 105061 2022 Scopus, Web of Science
Deeva I., Bubnova A., Andriushchenko P.D., Voskresenskiy A., Bukhanov N.V., Nikitin N.O., Kalyuzhnaya A.V. Oil and Gas Reservoirs Parameters Analysis Using Mixed Learning of Bayesian Networks//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2021, Vol. 12742, pp. 394-407 2021 Scopus, Web of Science
Kalyuzhnaya A.V., Nikitin N.O., Hvatov A., Maslyaev M., Yachmenkov M., Boukhanovsky A.V. Towards generative design of computationally efficient mathematical models with evolutionary learning//Entropy, 2021, Vol. 23, No. 1, pp. 28 2021 Scopus, Web of Science
Hvatov A., Maslyaev M., Polonskaia I.S., Sarafanov M.I., Merezhnikov M., Nikitin N.O. Model-Agnostic Multi-objective Approach for the Evolutionary Discovery of Mathematical Models//Communications in Computer and Information Science, 2021, Vol. 1488, pp. 72-85 2021 Scopus, Web of Science
Borisova J., Aladina A., Nikitin N.O. Hybrid Modelling of Environmental Processes using Composite Models//Procedia Computer Science, 2021, Vol. 193, pp. 256-265 2021 Scopus, Web of Science
Sarafanov M.I., Borisova Y., Maslyaev M., Revin I., Maximov G., Nikitin N.O. Short-Term River Flood Forecasting Using Composite Models and Automated Machine Learning: The Case Study of Lena River//Water, 2021, Vol. 13, No. 24, pp. 3482 2021 Scopus, Web of Science
Nikitin N.O., Hvatov A., Polonskaia I.S., Kalyuzhnaya A.V., Grigorev G., Wang X., Qian X. Generative design of microfluidic channel geometry using evolutionary approach//GECCO 2021 - Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2021, pp. 59-60 2021 Scopus, Web of Science
Barabanova I.V., Vychuzhanin P., Nikitin N.O. Sensitivity Analysis of the Composite Data-Driven Pipelines in the Automated Machine Learning//Procedia Computer Science, 2021, Vol. 193, pp. 484-493 2021 Scopus, Web of Science
Polonskaia I.S., Nikitin N.O., Revin I., Vychuzhanin P., Kaluzhnaya A.V. Multi-Objective Evolutionary Design of Composite Data-Driven Models//IEEE Congress on Evolutionary Computation, CEC 2021, 2021, pp. 926-933 2021 Scopus, Web of Science
Polonskaia I.S., Aliev I.R., Nikitin N.O. Automated Evolutionary Design of CNN Classifiers for Object Recognition on Satellite Images//Procedia Computer Science, 2021, Vol. 193, pp. 210-219 2021 Scopus, Web of Science
Nikitin N.O., Polonskaia I.S., Kalyuzhnaya A.V., Boukhanovsky A.V. The multi-objective optimisation of breakwaters using evolutionary approach//Proceedings of the 5th International Conference on Maritime Technology and Engineering, MARTECH 2020, 2021, Vol. 2, pp. 767-774 2021 Scopus
Kaluzhnaya A.V., Nikitin N.O., Vychuzhanin P., Hvatov A., Boukhanovsky A.V. Automatic Evolutionary Learning of Composite Models With Knowledge Enrichment//GECCO 2020 - Proceedings of the Genetic and Evolutionary Computation Conference Companion, 2020, pp. 43-44 2020 Scopus, Web of Science
Sarafanov M., Kazakov E.E., Nikitin N.O., Kalyuzhnaya A.V. A Machine Learning Approach for Remote Sensing Data Gap-Filling with Open-Source Implementation: An Example Regarding Land Surface Temperature, Surface Albedo and NDVI//Remote Sensing, 2020, Vol. 12, No. 23, pp. 3865 2020 Scopus, Web of Science
Калюжная А.В., Никитин Н.О., Вычужанин П.В., Хватов А.А. Технологии прикладного искусcтвенного интеллекта в задачах численного моделирования процессов в океане // Комплексные исследования Мирового океана: материалы V Всероссийской научной конференции молодых ученых (Калининград, 18-22мая 2020г.) -2020. - С. 81-82 2020 РИНЦ
Nikitin N.O., Polonskaia I.S., Vychuzhanin P., Barabanova I.V., Kaluzhnaya A.V. Structural Evolutionary Learning for Composite Classification Models//Procedia Computer Science, 2020, Vol. 178, pp. 414-423 2020 Scopus, Web of Science
Никитин Н.О., Полонская Я.С., Калюжная А.В. Интеллектуальное проектирование защитных сооружений на шельфе с применением моделей морской среды и методов оптимизации // Комплексные исследования Мирового океана: материалы V Всероссийской научной конференции молодых ученых (Калининград, 18-22мая 2020г.) -2020. - С. 141-142 2020 РИНЦ
Deeva I., Nikitin N.O., Kalyuzhnaya A.V. Pattern Recognition in Non-Stationary Environmental Time Series Using Sparse Regression//Procedia Computer Science, 2019, Vol. 156, pp. 357-366 2019 Scopus, Web of Science
Khvatov A.A., Nikitin N., Kaluzhnaya A.V., Kosukhin S.S. Adaptation of NEMO-LIM3 model for multigrid high-resolution Arctic simulation//Ocean Modelling, 2019, Vol. 141, pp. 101427 2019 Scopus, Web of Science
Nikitin N.O., Deeva I., Vychuzhanin P., Kalyuzhnaya A.V., Hvatov A., Kovalchuk S.V. Deadline-driven approach for multi-fidelity surrogate-assisted environmental model calibration: SWAN wind wave model case study//GECCO 2019 - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion, 2019, pp. 1583-1591 2019 Scopus, Web of Science
Vychuzhanin P., Nikitin N.O., Kalyuzhnaya A.V. Robust Ensemble-Based Evolutionary Calibration of the Numerical Wind Wave Model//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, Vol. 11536, pp. 614-627 2019 Scopus, Web of Science
Kovalchuk S.V., Kisliakovskii I.O., Metsker O.G., Nikitin N.O., Funkner A.A., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O. Towards management of complex modeling through a hybrid evolutionary identification//GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion, 2018, pp. 255-256 2018 Scopus
Kalyuzhnaya A.V., Nikitin N.O., Butakov N.A., Nasonov D.A. Precedent-based approach for the identification of deviant behavior in social media//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, Vol. 10862, pp. 846-852 2018 Scopus, Web of Science
Araya-Lopez J., Nikitin N.O., Kalyuzhnaya A.V. Case-adaptive ensemble technique for met-ocean data restoration//Procedia Computer Science, 2018, Vol. 136, pp. 311-320 2018 Scopus, Web of Science
Nikitin N.O., Kalyuzhnaya A.V., Bochenina K., Kudryashov A., Uteuov A., Derevitskii I., Boukhanovsky A.V. Evolutionary ensemble approach for behavioral credit scoring//Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2018, Vol. 10862, pp. 825-831 2018 Scopus, Web of Science
Kovalchuk S.V. ., Metsker O.G., Funkner A.A., Kisliakovskii I.O., Nikitin N.O., Kalyuzhnaya A.V., Vaganov D.A., Bochenina K.O. A Conceptual Approach to Complex Model Management with Generalized Modelling Patterns and Evolutionary Identification//Complexity, 2018, pp. 5870987 2018 Scopus, Web of Science
Noymanee J., Nikitin N.O., Kaluzhnaya A.V. Urban Pluvial Flood Forecasting using Open Data with Machine Learning Techniques in Pattani Basin//Procedia Computer Science, 2017, Vol. 119, pp. 288-297 2017 Scopus, Web of Science
Nikitin N.O., Spirin D.S., Visheratin A.A., Kalyuzhnaya A.V. Statistics-based models of flood-causing cyclones for the Baltic Sea region//Procedia Computer Science, 2016, Vol. 101, pp. 272–281 2016 Scopus, Web of Science